搜尋此網誌

2025年6月26日 星期四

MSM_AI輔助創新六大模組 甘苦小故事(短文)



【會話中迷失:大語言模型在複雜任務中的瓶頸與突破】

在使用大型語言模型(LLM)進行多輪對話時,經常會遇到一個難以忽視的問題:「會話中迷失(Lost in Conversation)」。這代表一旦模型在某一輪回答中出錯,錯誤便可能如骨牌般連鎖發生,使得後續回到正軌變得困難。這類問題在處理複雜的技術創新與知識整合任務時,特別明顯。

👉 參考文獻:arXiv:2505.06120


在兩年前(2022Dec~2023May)設計 MSM(Multi-Shots-Models AI 輔助創新方法)時,我也深刻感受到這個挑戰。為了確保模型在多次提問過程中仍能維持高品質與主題聚焦的輸出,除了進行內容的結構化設計,我也導入了多種提示工程技術(Prompt Engineering Techniques)作為模型導向與錯誤校正的關鍵手段。

但即使如此,仍會出現模型陷入迷失或產生幻覺的瓶頸,因此我當時啟用了兩個付費 GPT 帳號進行對比測試與路徑重導,終於建立起完整的 MSM 六大模組架構,並設計出超過 20 組關鍵提問模型(Key Prompt Frameworks)

這個架構融合了多項跨領域工具與流程:

  • 新產品開發流程:Cooper、PDMA、Crawford、IPD 等。

  • 問題解決技術:KT法、RCA、FMEA、FA等。

  • 創新方法:Design Thinking(三種版本)、TRIZ等。

  • 專利分析技術:FTO、專利地圖、佈局與迴避設計等。

  • AI提示工程策略:模組化提示描述、錯誤鏈斷點設計、多輪對話導引技術等。

這套系統的設計過程花了我三個月、研讀超過百篇 AI 相關研究文獻,才整合出這套能真正導入企業實戰的 MSM_AI 輔助創新流程 (PS. 那時候還特地寫了一篇部落格短文紀念)。兩年來已在多家企業的創新專案輔導中,證實其實效,特別是在R&D、專利布局與AI技術應用開發領域,對比過去使用的傳統模式,根據企業專案輔導的統計結果,完整的MSM_AI輔助創新流程平均縮短研發50%開發時間。


MSM_AI × Agentic LLM 平台 PoC 實戰整合

從2023六月完成開發MSM後的兩年的時間裡,在四大領域 (手機、半導體、新能源、AI技術開發) 累積38 個 成功案例!

目前,MSM_AI 模組已可結合如 Dify 等 Agentic AI 平台,作為企業導入大型語言模型的 PoC 驗證方案,協助:

  • 提升企業 自建 LLM 平台的內部使用率

  • 導入具結構性的創新思維模組,增加思考模式並提高思考效率

  • 解決 LLM 在複雜任務中的常見迷失與輸出品質劣化問題 



📌 大語言模型真正的挑戰,才正要開始。

面對複雜問題的知識組織與創新應用,若無清楚架構與提問引導,LLM 容易失準。這正是 MSM 設計的核心價值:讓 LLM 成為創新引擎,而非失控變數


#AI_LLM
#AI4INNOVATION
#MSM_AI輔助創新
#MSM_六大模組

企業對 MSM_AI輔助創新有興趣,歡迎與我聯絡現場 DEMO 事宜!

SERVICE@IIIINNOVATION.COM (3*I+ INNOVATION)


2025年6月8日 星期日

TRIZ ,在AI 時代即將重構的創新工具:從高門檻知識工具到創新驅動引擎


#AI時代來臨,TRIZ 的應用進入新階段

   TRIZ(Theory of Inventive Problem Solving)自1980年代起即在全球工程與創新領域廣泛推廣, 作為一套歷經超過 40 年全球推廣的創新方法論,過去以其穩定的創新系統架構與強大的問題解決能力,在工程技術創新領域享有極高聲譽。其工具體系完整,從早期的矛盾矩陣、發明原則、物理矛盾、理想解到擁有嚴謹邏輯架構的功能分析、技術系統進化趨勢到ARIZ等進階工具,構成完整的創新問題分析與解決框架,滿足從創意開發到解決核心技術問題的需求。

 然而,回顧過去數十年在世界各國跨國企業的實施經驗發展,讓我們發現到,TRIZ 長期面臨的挑戰始終不脫離三大瓶頸,分別是:

學習門檻高、知易行難、應用成本高。

  

基礎工具知識需超過百小時培訓時間(從LV1~LV3, 24+32+108 共164 hrs) ,並且要能真正熟練,除了這些工具知識以外,更需要累積數年專案實務經驗,因此TRIZ工具即使具備強大創新應用潛力,這使得TRIZ 難以大規模普及,例如中小企業,尤其是在非工程背景或資源非常有限的企業中,也因此TRIZ工具用人才過去長期以來僅普遍存在於大型跨國企業或少數高階技術開發團隊中。

關鍵字:AI, TRIZ, Innovation, AI輔助創新, AI_LLM_For_Innovation


#AI_LLM崛起,打破 TRIZ 工具知識的學習門檻

 

隨著大型語言模型(LLM, 如 ChatGPT、Claude、Gemini 等)的應用普及,TRIZ 的工具知識正在迅速被「語意提示(Prompt Engineering)」所替代。透過結構化提示描述設計,TRIZ 工具不再需要靠人工死記與手動分析,而是能由AI LLM 強大的資料收集處理與分析和生成的能力,快速推導出如矛盾問題模型、可能的理想解方向、發明原則以及更進一步結合ARIZ應用於解決困難問題流程等生成內容。

此一變革使得 TRIZ 學習門檻驟降,例如包括:

 1. 初學者可透過TRIZ工具提示模組與AI互動學習,從做中學,快速上手,縮短TRIZ工具學習曲線的使用方式。

 2. 中階使用者可透過根據根據專案任務需要設計的創新流程,使用AI整合提示包組合,協助產品技術研發相關人員快速完成創新輔助任務。

 3. 專案顧問則可依據自身產業經驗、分析問題類型並設計TRIZ工具對應問題解決的工作流,加上其他工具,整合成專案級的客製化 AI 輔助創新流程。

TRIZ 工具正從「需要理解與掌握」的學科,轉化為「可以調用與應用」的模組,這是目前TRIZ 在 AI 時代所觀察到最關鍵的進化。

 但 AI + TRIZ ≠ 萬靈丹,#TRIZ應用仍需專案經驗支撐

即便 AI LLM 能迅速給出結構化創新建議,受限於AI LLM應用能力限制以及顧問專家對於TRIZ工具理解程度所給予的結構化提示描述,目前 TRIZ 工具的應用依然需依賴領域知識與專業技能的判斷力。若缺乏下列要素,TRIZ + AI 工具依然難以產生實效,包括但不限於例如:

1. 企業內部需求問題脈絡解析能力

2. 相關對技術需求與市場動態的理解

3. 熟悉 TRIZ 工具的實務應用顧問或內部專家引導

4.  再來就是能根據專案需求整合多種不同工具組合設計的使用能力

5. 能整合專案資源與判斷專案可行性的跨域能力

換句話說,TRIZ + AI 加速創新引擎,但創新領航者仍是具備應用經驗的專家或顧問。


#TRIZ應用模式的轉型:從工具學習轉向專案導入

過去TRIZ學習模式從企業和TRIZ專家合作模式觀察發現主要可以分為三類:  

1. 純工具知識培訓:工具知識式學習(課堂講授,理論先行)

2. 企業內部專案模式:企業專案邊做邊學(即學即用,以戰代訓)

3. 專家專案輔導模式:混合式模式(先學工具再實作應用)

 但在 AI 驅動的創新時代,#TRIZ教育模式將發生以下轉變:

 1. 工具知識式學習將逐漸被 AI LLM 模型內化的提示包組合取代  

2. 專案即戰力的邊做邊學模式將成為主流 

3. 知識型顧問轉型為AI提示模組設計師與專案策略整合者  

這一轉型也促使 TRIZ 創新顧問角色重新定義 —— 不再只是教學工具知識,而是設計 AI + TRIZ + 專案流程的整合式創新解決方案。


#TRIZ在AI時代的價值重構:從工具學習到創新驅動引擎

結語:TRIZ 在 AI 時代的意義不再是「學多少工具」,而是「能否有效結合 AI 與TRIZ應用,為企業創造實質專案的創新成果」。AI 解決了 TRIZ 推廣的最大瓶頸——知識工具學習負擔,讓更多人能用得起、用得快。但要能做到誕生創新成果,能不能用得對、用得準,仍需應用經驗與工具方法流程使用設計的融合能力。

因此,未來的創新人才與顧問將不再僅限於 TRIZ 的「教學者」,而是 TRIZ+AI 的「流程設計者、資源整合者、價值實現者」。這場變革不僅是創新工具層的革新,好比是工業革命時代的知識蒸汽機,驅動創新思維與產業應用的進行根本性重構。

下一階段,將預見創新教育與應用焦點將會出現在:

A. TRIZ工具模組的語意化提示優化

B.  AI輔助的TRIZ應用工作流設計

C. 導師/顧問制的企業創新推進模式

 

這將是一場從「創新工具訓練」走向「創新生產力引擎」的徹底變革,也唯有那些能徹底掌握TRIZ工具知識應用在AI LLM上的人,將會帶領企業穿越AI帶來的未知,創造新的成長曲線。


#AI輔助創新

#AI_LLM

#TRIZ_TOOLS


2025© 汪周禮@智合創新
AI輔助創新:AI+TRIZ+NPD+設計思考+專利迴避設計+提示工程描述設計的創新應用整合流程設計專家

AI輔助創新成功經驗:半導體專利技術挖掘、技術風險分析、新能源AI產品技術應用專案開發、創新式專利迴避設計


如需 DEMO,歡迎與我們聯絡
service@iiiinnovation.com


2025年5月19日 星期一

TRIZ實作系列 1 - TRIZ 工具僅是起點,培養系統思維脈絡與問題建模能力才是應用關鍵



TRIZ 工具僅是起點,培養系統思維脈絡與問題建模能力才是應用關鍵 

過去參加研討會時,曾經有人問我:

TRIZ 有那麼神嗎?真的可以幫企業解決研發難題嗎?」

 

我說:「真的可以,但,別神化。」

 

關鍵字:TRIZ, 創新, 問題模組, 系統思維, 技術脈絡

本文長2800多字,閱讀時間約15分鐘。


TRIZ 是一套強大的創新工具,但它不是解方的終點。

我長期協助企業進行創新產品技術開發,解決困難問題,深知TRIZ 當然是一套有邏輯嚴謹、可系統操作的方法工具。但如果你對工具一知半解、只想看案例、只想模仿操作流程、不懂如何正確使用,卻忽略背後的技術系統脈絡思維與不會解析問題本質,那就很難體會TRIZ應用關鍵—問題建模能力,那 TRIZ 很可能對你來說只是個複雜表格的工具代名詞!

甚至有可能,不但沒幫上忙,還可能讓你一團霧水,甚至用不明就裡的使用發明原則誤導決策,導致失敗,最後認為TRIZ沒用,而束之高閣。


TRIZ 應用的關鍵在於:正確使用問題建模

要能體會TRIZ大用,首先要挑戰解決困難技術問題開始,這個解決困難問題並非僅僅提供創意或概念方案,而是要能進一步找出POC方案,再篩選出具體實施方案,但這一步非常難,如果本身沒有熟悉的技術領域不容易突破,但突破這一層後,就可以踏入產品開發架構設計,甚至根據新產品開發的經驗,進一步了解如何解析商業模式、根據需求開發出適合技術核心的商業模式了。然而根據我多年解決技術問題、新產品開發問題與輔導商業模式開發設計的經驗來看,TRIZ應用的關鍵核心在於正確的使用問題建模!

 

🎯 案例學習有效複製

脫離系統思維與技術脈絡,TRIZ 很容易失靈

 

這幾年我觀察到一個常見現象:

很多人學 TRIZ,是從看案例開始。他們會說:

 • 「這個案例用了矛盾矩陣第 39 20,所以我也可以這樣套用。」

 • 「那家公司用標準解 1-2-1 解決了設計問題,我也試試看。」

 

問題來了——

你知道他為什麼選這個工具嗎?

你知道背後的技術背景、工程參數選擇的條件是什麼嗎?

你知道參數與問題模型的對應本質是否一致?

 

如果不知道,那麼你只是表面模仿,沒有真正理解。

模仿的失敗往往不是工具用錯,而是背景不同,導致效果完全相反。

 

在我過去遇過的案例中,常常看到他人模仿失敗往往不是因為工具用錯,而是背景不同、技術條件與使用工具的方式很有可能會讓效果完全不同!

 

 

工具不是主角,系統思維的技術脈絡才是靈魂

 

TRIZ 最大的價值不在於它有多少張表、多少個發明原則或標準解。

而是:

TRIZ幫助我透過系統性的結構化方式思考描述問題,重構思維框架建立正確的問題模型,選擇適合的思維模式推導出最適合的創新策略。

 

這其中的關鍵步驟,不在工具本身,而在於:

 1. 否理解問題的技術本質?這不是問你知不知道問題痛不痛,而是問你是否知道正確選擇技術系統範圍與限制!

 2. 否正確建構出問題模型?確認系統技術範圍與限制後,確認適合的問題模型以及正確而嚴謹的建立問題模型,例如矛盾在哪?哪一種矛盾層次,相關參數是否可量化或轉換為其他定性描述或結構化的方式組合?

 3. 是否知道什麼時候該用哪個工具、又有哪些工具不能用?我們知道因果鏈CECA挖掘問題很好用,但系統過於複雜的時候,並非適合所有場景,例如多系統層次整合的問題,這時候如何適當的結合其他工具發揮,就很重要!

 

這些TRIZ應用關鍵能力,完全無法靠「看案例」學會,只能靠你在熟悉系統化的技術思維脈絡中實際應用與反覆推演,或可推知一二而學會。

 

TRIZ 的三層操作結構:你在哪一層?

三層 TRIZ 應用架構:

🔧 工具操作層:  懂工具 → 工具操作有效性評估

 

📊 問題建模層:  建構正確模型 → 產生優質方案組合

 

🏗 技術脈絡層:  對接應用背景 → 精準設計架構系統方案策略

───────────────

我通常會把 TRIZ 的應用分成三個層次:

1. 工具理解層,這一層主要是熟悉triz解題工具,了解不同工具的使用範圍與限制,進一步能根據實際情況設計出適合的就提工具組合與應用流程。 這裡我會使用流程設計有效性指標來評估。

2. 問題解析與問題建模層,這一層非常重要,如何選擇並放在適當的應用流程位置,能決定未來概念方案的有效性、方案品質與方案數量。 這裡我會使用問題解析和建模有效性指標來評估。

3. 最後就是技術系統脈絡思維,也可以說是在具體特徵銜接系統架構設計的關鍵,這個需要深入理解技術背景、應用情境場域,否則很容易錯判系統範圍,造成系統分析過於複雜而無法精準鎖定應用有效區間而導致無法使用triz工具或使用失敗。 這裡我會使用系統架構分析模組來進行評估。而這也是最重要的應用技能,決定triz工具是否能應用,但這往往難以透過案例學習,需要透過長期的實務操作經驗累積。

 

TRIZ三層操作架構,你在哪一層?



第三層(技術脈絡層)是最關鍵也最困難的,因為這不僅需要 TRIZ 的工具理解,更仰賴你對技術領域的深刻認知與實戰經驗以及應用技巧組合。

 

 

TRIZ 不能解決的三種情境

 

 1. 問題定義不清楚

如果你還在說「我覺得這是個問題」,那 TRIZ 幫不了你。TRIZ 處理的是明確技術問題,不是模稜兩可的痛點。

 

 2. 🧾沒有具體技術參數可操作

TRIZ 的工具多半需要具備從定性分析到量化或結構化的分析條件,例如「壓力 vs 強度」、「成本 vs 效率」。如果你連這些基本參數都理解不明確,就很難進入工具選用階段。更何況使用複雜參數組合所建立的問題模型矩陣了!

 

 3. 🧪脫離實際工程背景

很多創新方法在白板上都看起來很美好,但一旦離開現場、缺乏脈絡、沒有工程背景經驗,就會像是拿著精密手術刀卻不知道該切哪裡或是手中拿著筷子卻無法在宴會餐桌上夾起任何美食。空談創新方法、缺乏現場經驗,只會讓 TRIZ 成為紙上談兵。

 

 

我在企業實務中的 TRIZ 操作心得

 專利迴避設計:在協助客戶做專利迴避設計時,我從不先選工具,而是先搞清楚客戶實際需求、技術限制與市場競爭定位下的應用範圍。

 研發技術人員卡關:當發現技術人員用問題模型解不了問題,我會回頭檢查:是不是問題描述出問題?是不是選擇的問題模型根本無法對應系統特徵和需求?

 技術專家說問題無解:我也遇過不少「技術專家」說:「這問題沒法解」,但我用不同的解題流程組合對應的建模方式(例如極限模型或矛盾問題模型矩陣)找出突破點。

 

這些都不是工具本身多厲害,而是是否能夠理解深度工具、建構正確問題模型、設計出有效的解題流程與選擇適合解題策略。

 

 

結語:TRIZ 要落地,請帶著「現場智慧」操作

 

TRIZ 不是魔法,更不是萬靈丹。

TRIZ是你在理解技術、正確建構模型、根據需求選擇策略後的高效率創新輔助系統工具組合包。

 

當你真正進入技術問題現場,理解技術背後邏輯與技術限制,再用 TRIZ 工具做搭配時,你會發現它就像打開了系統盲點的一把鑰匙——不是關鍵本身,但能引導你找到關鍵。

 

TRIZ 是打開創新盲點的鑰匙,不是答案本身,卻能指引你找到關鍵。

 

 

📌 你也遇到 TRIZ 落地困難的情況嗎?

 

💬 歡迎留言交流

你是否也曾遇過 TRIZ 落地困難?歡迎分享你的經驗,或是私訊我討論~

讓創新真正發生在研發現場,而不只停留在白板上。

 

作者:汪周禮

TRIZ實戰專家創新顧問

2008年起,累積將近17TRIZ應用輔導企業產品技術與商模創新實務操作經驗,協助企業成功獲得多項創新成果,累積創造超過19億(接近20億)新台幣經濟價值(客戶自評)。

2025© 複製或轉發請來信取得授權


智合TRIZ 創新專家 實戰培訓課程 2025 Q4 

智合創新 TRIZ工具實戰應用培訓班 (一年一班)

https://www.iiiinnovation.com/product-page/%E6%99%BA%E5%90%88triz-%E5%9F%BA%E7%A4%8E%E5%9F%B9%E8%A8%93%E8%AA%B2%E7%A8%8B-2020


MSM_AI輔助創新六大模組 甘苦小故事(短文)

【會話中迷失:大語言模型在複雜任務中的瓶頸與突破】 在使用大型語言模型(LLM)進行多輪對話時,經常會遇到一個難以忽視的問題: 「會話中迷失(Lost in Conversation)」 。這代表一旦模型在某一輪回答中出錯,錯誤便可能如骨牌般連鎖發生,使得後續回到正軌變得困難。這...