搜尋此網誌

2025年4月21日 星期一

智慧財(IP)技術迴避設計:數位轉型企業必修

 

2025.04.21 汪周禮

開源協議風險與技術迴避設計:AI數位轉型企業不可忽視的必修課

在企業數位轉型與 AI 落地加速的當下,開源技術成為不可或缺的推進力量。然而,許多企業在享受開源所帶來的便利與效率時,卻忽略了其背後潛藏的法律與技術風險。

對企業而言,開源並不是免費的萬靈丹。若未建立正確的開源風險觀念與技術應對能力,開源反而可能成為阻礙商業創新的絆腳石。

不只是法律風險,更是技術整合風險

開源協議的風險不僅是法律層面的授權爭議,更關鍵的是隱藏在開發流程中的技術風險。許多開源協議如:

  • GPL(General Public License):高度傳染性,要求衍生作品同樣開源,若誤用恐導致整體商業產品授權被迫開放;

  • LGPL(Lesser GPL):傳染性降低,但仍需注意靜態與動態連結的使用方式;

  • MIT / BSD / Apache:較為寬鬆、允許商業應用,但仍存在專利條款或聲明義務。

實際上,多數企業的風險不是來自於協議本身,而是來自於「技術整合時的依賴關係未察覺」:

  • 無意中引入了 GPL 授權的函式庫;

  • 因套件轉包導致使用者未察覺授權變更;

  • 混合使用商業軟體與開源模組,導致專利授權與開源義務衝突。

這些複雜依賴與交叉使用,使得開源協議風險分析變得不僅是法務部門的事,更是軟體技術設計的挑戰

技術迴避設計:真正的風險穿越能力

面對高傳染力的 GPL 類協議,企業除了避開使用之外,更應該具備「技術迴避設計(Avoidance Design)」的能力。這不只是修改架構那麼簡單,而是透過深度理解協議條款與技術系統依賴,重新設計可替代架構與資料流動機制。

我曾在過去於蒙恬科技(PenPower)負責開源風險迴避設計專案,該專案整合了:

  • 法務律師的協議解釋與合規審查

  • 工程人員對實作細節與依賴樹的掌握

  • 技術架構師的系統重構與模組切割能力

三方合作下,才能打造出真正能避開授權限制、合法且穩定可用的商業應用架構。

這樣的協作過程不僅讓產品「合法可用」,更是提升企業軟實力與研發獨立性的關鍵。

AI + 開源時代的挑戰加劇

AI 時代的開源應用更加複雜:

  • 大型語言模型(如 LLaMA、Stable Diffusion)雖標榜開源,但多數附有「不可商用」條款;

  • 開源模型的訓練資料未明確授權,潛藏侵權風險;

  • 模型推論雖不觸碰原始碼,但輸出結果是否算為衍生作品仍具灰色地帶;

  • 許多企業使用開源工具包(如 Hugging Face、Transformers),卻未意識到其依賴鏈中的授權交叉風險。

這些都意味著,AI 的導入不能只是「好用就上」,而是必須先問能不能用、該怎麼合法用,然後再問怎麼技術突破地用

現有工具的不足與未來方向

雖然目前已有如 SBOM(Software Bill of Materials)等工具可協助掃描使用元件、加速比對開源授權,但在實際商業應用與技術判斷層面,作用仍有限

因此,我們建議企業應從以下方向著手:

  1. 強化 OSPO(Open Source Program Office)制度:不只是合規管理部門,更是開發階段的參與者,協助設計開源友善架構。

  2. 建立風險地圖與可視化依賴模型:搭配 SBOM 資料,進一步結合商業目標與合規風險建模。

  3. 設計開源協議迴避設計流程:將技術替代設計模組化、系統化,作為標準化研發流程一部分。

  4. AI 模型風險評估架構:針對訓練資料、權重參數與推論過程,設計合規評估機制與責任切分框架。

結語:開源,不只是開始,更是考驗技術實力的關鍵

開源世界的本質,是分享與自由,但若要轉化為企業價值,就需要具備能「合法使用」、「合規迴避」、「技術突破」的綜合能力。

我們正處於一個AI+開源交疊的新時代,而能否在風險中前行、在限制中創新,將決定企業能否真正掌握未來。

開源不是避風港,而是技術創新的試金石。

未來知識學- 在 AI 輔助創新的時代需要的能力



2025.04.21 汪周禮

在 AI 輔助創新的時代,什麼能力才不會被取代?

解決問題、迴避設計與創新能力,將成為未來知識學的核心


在過去,專業知識與技術能力是個人成長與企業競爭力的核心。但隨著 AI 技術的快速演進,我們正在進入一個全新的時代:大量流程化、重複性、低認知的工作,將被 AI 迅速取代

製造、程式撰寫、資料分析……這些技能過去或許門檻高、價值高,但如今只要掌握幾個工具,每個人都能用 AI 實現原本需要團隊才能完成的任務。那麼,我們該怎麼在這個「AI 隨手可得」的時代中不被邊緣化?

答案是:認知能力的升級與認知技能的重構


世界經濟論壇(WEF)近日針對2030年職場核心技能提出未來職業報告,該報告指出2030年,預計將有六成職場技能將會被取代,以及2030年最重要的十大核心技能,其中認知技能(2,3,4,7,8,10)共6項,前10占比超過50%!


Full report: https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf

#AI, #AI輔助創新, #未來知識學, #認知能力, #2030職場技能




🔺 認知能力金字塔:AI 時代每個人都必須培養的三層技能

當技術執行逐漸交由 AI 處理,人類的價值將轉移到思考的層次。我們整理出 AI 輔助創新時代的三大關鍵認知能力,形成一個思維升級的金字塔模型:

1. 解決問題能力:找到「對的問題」才是關鍵

多數人在遇到問題時,第一直覺就是「馬上解決」。但這往往導致解決的只是表層現象,而非真正的根因。

在 AI 助力下,我們可以快速分析資料、建立情境模型,但若缺乏「挖掘本質」與「重新定義問題」的能力,就會誤用資源、錯失機會。

✅ 關鍵技能包括:

  • 問題拆解與邏輯建構

  • 問題樹與假設模型建立

  • 情境分析與再定義

🧠 工具輔助建議:

  • 使用 ChatGPT 建立問題分析流程

  • 讓 AI 幫你模擬不同問題路徑下的潛在因果關係


2. 迴避設計能力:設計一個「不容易出錯」的方案

真正有價值的設計,不是找到一個解法,而是找到一個經得起現實條件考驗的解法

這層能力強調風險意識與周延性。你要能在設計前就預見問題,在設計中消除風險,最終讓方案在變動條件下依然能運作。

✅ 關鍵技能包括:

  • 解法風險分析(如 FMEA)

  • 邊界條件推演與限制參數管理

  • 使用 TRIZ 技術矛盾/物理矛盾進行迴避創新

🧠 工具輔助建議:

  • 用 AI 找出過往類似設計失敗案例

  • 輔助建立風險矩陣與備援機制


3. 創新能力:需求對齊與價值重構的能力

創新不等於靈光乍現,而是一種能動態對齊市場需求、重構資源與價值的認知能力。

這是一種策略性的視角,需要你具備「看穿變化本質」的洞察力,能夠透過重新定義問題與資源配置,在現有限制下創造出差異化解法。

✅ 關鍵技能包括:

  • 對需求的動態建模與再定義

  • 創造差異化價值主張

  • 商業模式思維 × 技術應用思維的整合

🧠 工具輔助建議:

  • 利用 AI 協助進行價值主張設計與使用者旅程圖分析

  • 生成多個創新原型並驗證可行性


🧠 認知能力的養成,才是「未來知識學」的核心

在未來,重點將不再是**「知道什麼知識」,而是「能不能用對認知方法去創造有價值的知識」**。

這種從知識記憶 → 知識結構 → 知識創造的轉變,是一種嶄新的學習觀,也是一種職場永續競爭力的保證

而這三層金字塔的能力,本質上正是未來知識學的三個核心支柱:

  1. 知識解析力(解決問題)

  2. 知識轉換力(設計迴避)

  3. 知識創造力(價值創新)


🚀 小結:AI 正在重新定義「人才」的價值

當 AI 可以寫程式、製造產品、甚至自動設計介面,那麼真正難以取代的,是有能力「問出對的問題、設計不出錯的方案、提出有競爭力的新解法」的人

未來不是沒有工作,而是對「認知力強」的人才需求暴增。

現在,就是你重新思考學習與工作方式的時刻。



📌 你目前的學習與工作,是否正在培養這三種能力?

💡 如果想了解如何導入這套能力培養架構到企業訓練、AI導入或創新流程中,歡迎聯絡與我交流(service@iiiinnovation.com)

下一篇文章我會談談——如何設計一套針對這三層能力的 AI 輔助創新訓練系統

2025年4月14日 星期一

 生成式AI混亂的啟發 - 找出去蕪存菁的文章特徵點


網路透過文字傳遞思想,但文字作為思想載體還是會失真,但至少是目前我們擁有的。


從2008到2012年專利技術分析超越四萬件專利,後面沒在算了,專利分析累積從文字擷取技術特徵與特徵參數的能力,轉換到閱讀文章速度更快也更簡單,這個技術特徵對應到文章就是所謂的觀點,而參數就是觀點的細節具體描述。


如果一個技術方案的技術特徵與特徵參數組合豐富,我們就知道這個發明肯定有東西,同理,在看一般網路文章也可以用這種方式快速篩選。


基於上面的道理,我們看一個人文章就知道,當文章把很多觀點透過文字傳遞,如果文章觀點豐富,容易觸動共鳴而引人深思,就知道這個人很厲害,是個飽學之士蘊藏智慧。


但是觀點少也不見得不好,主要在於啟發性,這同樣也可以套用到專利審查要件中的創造性或非顯而易見性 (inventive or non-obviousness)要件,特別是美國專利審查基準的非顯而易見性要件,是目前我研究過全球最豐富的且完整的創造性要件,至少有超過20個不同的切入角度。如果符合創造性要件的思維模式,這樣的文章內容也是可以的。


念書找知識點,技術分析找特徵點,而寫文章找觀點或認知點切入,一篇文章多達十多種認知點,就是非常有價值的內容了,也讓人深受啟發。


根據我的觀察,#AI文章的認知點很少 ,因為生成技術的關係,通常都是順著一個觀點延伸出知識點,而人類寫文章受經驗知識與智慧影響,越厲害的人可以植入很多不同觀點形成文章的特徵點,繼而引發共鳴,啟發思想。


目前教育或許應該是時候開始培養學生能夠分析文章、論文或技術的能力,藉此作為建立初步的系統思維和分析思維的能力基礎。


補充:

學識累積知識點,經驗累積觀點,而認知層次的認知點可以塑造出不同的認知角度,而知識點之間交互作用看邏輯、相關、層次與架構。


2025.04.14 汪周禮隨筆


文末附上使用五種評估指標利用CHATGPT分析網路文章




CHATGPT分析專利 - 提取專利技術物理矛盾

hashtag

CHATGPT分析專利]

CHATGPT越來越能夠精準分析專利技術,並從專利中提取出 hashtag物理矛盾問題模型

TRIZ問題模型有六大類,常見的就是IF THEN BUT 描述格式,IF THEN BUT的描述格式常見有兩種:
1. 技術矛盾問題模型
2. 物理矛盾問題模型

以往物理矛盾問題模型描述正確建立具有一定難度,一般TRIZ專家也不見得能很精準且快速地從專利資訊中擷取出來。

然而技術矛盾則相對非常簡單,也很容易提取,但是技術矛盾對於解決技術問題的效益遠低於物理矛盾,特別是軟體領域,根據專案經驗成果,軟體領域的技術方案需要從物理矛盾的角度出發,產生的技術方案相對具有技術應用價值!!

[hashtagCHATGPT分析專利]

CHATGPT越來越能夠精準分析專利技術,並從專利中提取出 hashtag物理矛盾問題模型

TRIZ問題模型有六大類,常見的就是IF THEN BUT 描述格式,IF THEN BUT的描述格式常見有兩種:

1. 技術矛盾問題模型
2. 物理矛盾問題模型


以往物理矛盾問題模型描述正確建立具有一定難度,一般TRIZ專家也不見得能很精準且快速地從專利資訊中擷取出來。


然而技術矛盾則相對非常簡單,也很容易提取,但是技術矛盾對於解決技術問題的效益遠低於物理矛盾,特別是軟體領域,根據專案經驗成果,軟體領域的技術方案需要從物理矛盾的角度出發,產生的技術方案相對具有技術應用價值!!

CHATGPT的加入讓以後研發壓力越來越輕了!

--

在解決方案的價值層面來看,能夠解決物理矛盾的技術方案基本上都有申請專利的價值,技術矛盾則不一定。

所以對研發來說,解決物理矛盾才會有更好的效益,但是難度也更高。

hashtagCHATGPT
hashtag專利
hashtagIF_THEN_BUT
hashtagPROBLEM_MODEL


service@iiiinnovation.com



智慧財(IP)技術迴避設計:數位轉型企業必修

  2025.04.21 汪周禮 開源協議風險與技術迴避設計:AI數位轉型企業不可忽視的必修課 在企業數位轉型與 AI 落地加速的當下,開源技術成為不可或缺的推進力量。然而,許多企業在享受開源所帶來的便利與效率時,卻忽略了其背後潛藏的法律與技術風險。 對企業而言,開源並不是免...