搜尋此網誌

顯示具有 創新 標籤的文章。 顯示所有文章
顯示具有 創新 標籤的文章。 顯示所有文章

2025年10月9日 星期四

從 OpenAI Dev Day 看未來知識經濟發展趨勢 - AI產品開發時代生存指南


生成式AI根據前言內容產生

前言

OpenAI dev day 增加了Agent Builder 功能,消滅了很多新創,這個非常殘酷,也很難預料,畢竟在科技巨頭相互高強度競爭的時代,新創很容易因處在巨頭發展方向而被吞噬,如何找到生存帶,的確不容易,特別是為了彌補巨頭功能所搶下的市場。


特別是AI這種賽道,和傳統軟體產品不同,這一次,生成式AI要做的是顛覆現有人類知識經濟結構,因此只能從AI做不到而且是未來AI也難以做到的事情,並且以此作爲產品開發的價值基礎。


很慶幸的,我一開始選則最難的那條路,AI輔助創新,這需要突破慣性思考模式的抽象思維泛化能力結合解決複雜問題的核心能力,因此即便到目前為止,即便目前最強大的GPT5 ,甚至AGI出現,也難以做到,反而隨著AI(LLM)的強大,我的TA會從資深研發變為一般工程師,而最終目標是讓一般人也有能力發揮創造力完成創新專案。

#AI

#未來產品
#AI輔助創新
#OPENAI_DEV_DAY


AI正逐漸顛覆近百年我們所熟悉的知識經濟時代發展模式。

在未來AI時代,知識創造能力越來越重要,複製知識和移轉知識的能力將會(或說正在)被AI顛覆!

未來的教育需要培養創造知識的能力,科學領域的研究與發現能力,也正是其中關鍵能力之一。


如何順練挖掘深層問題、避免後見之明、探索洞見(INSIGHT),這些都是可以培養創造知識能力的沃土。

#AI時代知識革命


從 OpenAI Dev Day 看未來知識經濟發展趨勢

—— 當巨頭壓境,知識價值創造成為最後的護城河

  

2025 年的 #OpenAI_Dev_Day,讓無數新創措手不及。

當 Sam Altman 宣布新一代 GPTs、AgentKit、Memory 與 GPT Store 的整合時,整個全球的生成式 AI 新創生態在一夜之間被重新洗牌。  

許多曾經以「Chatbot 工具」、「自動化平台」或「Prompt Marketplace」為核心的新創,突然發現自己的產品被官方直接整合進了 ChatGPT 主體。這場 Dev Day,無異於一次全球性的新創玩家大洗牌的「產品淘汰賽」。

這個事件所揭示的,不僅是技術更迭的速度,更是一個深層的現實:

在生成式 AI 的浪潮中,#知識經濟新定義正在發生。

 (知識經濟包括與知識有關的技術、產品、服務與商業模式,聚焦一點可以看成智慧財產,包括但不限於專利技術、商標、著作權(版權、軟體程式碼)、營業秘密等等,當然,體力活不算。畢竟歐美經濟名目GDP有40%以上都和智慧財產權(IPR)有關。)

   

一、從「工具戰」到「知識戰」

  在過去二十年裡,軟體創業講求的是「功能差異」與「使用者體驗」。但生成式 AI 的出現,讓這些優勢迅速失效。 

由於 GPT 類模型具備極強的知識模仿能力(收集、處理與預測生成),因此任何缺乏知識壁壘護城河與系統創造思維的產品,最終都會被模型「學走」。

OpenAI Dev Day 的一系列更新,實際上標誌著:

#產品力正讓位於知識力

在這個AI新時代,未來企業產品未來能否存活,不再取決於做出什麼功能,而是取決於——

你掌握了多少「AI 難以取代」的知識結構、思考模型與認知框架。


二、從三層雷達圖(知識、生存與價值層疊套) 看未來知識經濟架構



文字內容由汪周禮整理再讓CHATGPT生成上圖內容


根據多層次綜合分析,我們可以將 AI 時代的知識經濟分為三個層次:

🟡 1. Knowledge Economy Layer — 知識經濟層

這是AI生態系的底層價值核心。

企業或研究機構的創新能量,來自於知識的積累與系統化應用。

關鍵指標包括,例如:

知識深度 Knowledge Depth:理論與技術基礎的完整性(理論整合與工具應用),代表在理論、技術與方法論上的專業深度與原創性。知識深度成為創新強度的來源。

市場影響力 Market Impact:知識能否擴散成產業認知(標準),這與知識深度呈正相關,衡量知識成果在產業與社會中的滲透力與標準化潛力。市場影響力呈現出知識外化為產業共識力量的關鍵。

經濟價值 Economic Value:知識架構能否符合市場需求而能商業化。代表知識架構轉化為可衡量經濟回報的能力,其經濟價值讓知識架構成為資本追求目標,更是翻轉現有市場知識經濟的應用起點。


在 OpenAI Dev Day 的語境下,這裡代表的是「模型背後的知識壟斷」—— 

誰能定義世界的知識經濟結構,誰就能主導市場話語權。


目前生成式AI(OpenAI)生態系已經逐漸顯露出這一塊的優勢。



🟢 2. AI Survival Layer — 生態防禦層


這是AI 生態系的價值中層,已就是AI經濟生態系的生存邊界,會以防禦為主,建立新知識經濟架構下的護城河。

當科技巨頭壓境、技術標準逐漸集中時,未來企業要生存,就必須讓自身技術產品具有生態韌性。

核心關鍵包括:


耐用性與架構韌性 Durability / Infrastructure: 代表組織在技術與知識上的長期穩定性與可延展性。換句話說,長期韌性展示企業能否在技術快速迭代中保持穩定價值的核心。

護城河技術防禦能力 Technical / Defensibility: 代表企業抵禦模仿與替代的能力,也是創新的防禦層。防禦力也就是新知識經濟時代的競爭邊界。

創新同步 Innovation Synergy: 代表組織能否在多知識領域之間產生系統性創新與協同效應。創新協同反映出從個別突破走向生態共創的關鍵,體現其影響力範圍。


能在這一層站穩的企業,往往不是功能最強的,而是最能整合人類知識、AI 工具與產業 know-how 的,也就是擁有跨領域技能。可以預見未來跨領域人才將會因為AI的擴散而普及,成為企業關鍵人才

例如:

AI 輔助創新(AI-assisted Innovation)系統、垂直領域 AI(Vertical Domain AI)、企業專屬內部私有 AI系統。這些方向的共同特徵是:AI 難以直接複製,因為它們深植於人類的創造性邏輯和資料隱密與專業的獨特性。



🔵 3. Value Creation Layer — 價值創造層


最外層則是知識經濟的「應用擴散區」。

當一個組織能從知識創造與防禦走向價值擴張,就進入了 知識經濟飛輪(Knowledge Flywheel) 階段。

這層衡量的是:


商業模式滾動式設計(Business Model Rolling Design):代表企業在快速變動市場中,不斷修正與演化商業模式的能力。滾動式設計=企業能否「邊走邊修」地維持商業適應力。為了提升效能,組織扁平將成為企業組織發展趨勢,企業中層管理將消失。

需求採用率與規模化(Deman Adoption & Scalability): 代表產品或服務能否被市場快速採用並擴大覆蓋率。採用率與規模化對應到技術產品與服務的創新價值是否能被「看見、使用與放大」。

創新生態鏈協同(Innovation Ecosystem Synergy): 代表組織能否與外部夥伴、產業鏈、甚至競爭者共創價值。生態協同讓彼此競爭走向共創,透過彼此技術產品服務的整合而讓價值流動,形成新的、更大、更有利生存的生態系護城河。


在這裡,企業開始將自身的知識與 AI 系統整合,形成可以不斷複製價值的自我增強迴路,發展出持續生存的競爭優勢能力。



三、未來十年的關鍵趨勢


根據「Triple-layer Radar(知識 × 防禦 × 價值創造)」三層分析架構,我們可以預見幾個趨勢發生:

1.  知識結構化(Structured Knowledge)成為新黃金:未來競爭不在於資料量,而在於如何結構化與對齊知識,提升資料品質(資料是否真實、客觀和獨特成為關鍵,例如個人數位足跡將會越來越寶貴),使 AI 能持續學習與推理。

2. 垂直領域 AI 將成為過渡生存帶:泛用型 AI 將被巨頭壟斷,想像中垂直知識領域(醫療、能源、製造、法律)成為巨大發展空間,但實際上同業兢爭更為激烈,誰先完成AI數位轉型,將會創造彎道超車優勢。

3. AI 輔助創新(AI-assisted Innovation)成為主流模式:從「AI 代替人」(取代傳統知識勞動力)轉為「AI 強化人」(AI賦能創造力時代),知識創造型人才將與 AI 持續共創市場新價值。

4. 私有 AI 生態興起:企業將更重視內部資料治理與安全,形成專屬私有模型與知識庫,作為為企業持續打造AI數位產品的價值來源。

5. 知識資產化(Knowledge as Capital):專業知識、設計方法、推理鏈(CoT)等高價值應用蘊含複雜技巧的提示描述,將成為新的無形資本與交易標的。


四、結語:知識經濟 2.0 的核心精神

在 OpenAI Dev Day 之後,全球新創生態出現了分水嶺。那些只依賴工具與模板的公司正在被淘汰;而那些能夠 將知識結構化、將創造力系統化、將價值持續化 的企業,將在未來十年主導新一輪的知識經濟革命。


正如我過去這幾年所說的:


「這一次,AI 要顛覆的,其實是整個人類的知識經濟結構。」


未來真正的勝者,將不是擁有最多算力的人,而是能把知識轉化為系統性創新的那群人。賣鏟子賺的錢將會比不上找地方讓人買鏟子挖的人,這將會是AI給予給予未來知識創造者的應許之地


2025.10.09  汪周禮2025© 智合創新

2025年6月26日 星期四

MSM_AI輔助創新六大模組 甘苦小故事(短文)



【會話中迷失:大語言模型在複雜任務中的瓶頸與突破】

在使用大型語言模型(LLM)進行多輪對話時,經常會遇到一個難以忽視的問題:「會話中迷失(Lost in Conversation)」。這代表一旦模型在某一輪回答中出錯,錯誤便可能如骨牌般連鎖發生,使得後續回到正軌變得困難。這類問題在處理複雜的技術創新與知識整合任務時,特別明顯。

👉 參考文獻:arXiv:2505.06120


2025.06.26 首發, 2025.07.07更新
2025©汪周禮

在兩年前(2022Dec~2023May)設計 MSM(Multi-Shots-Models AI 輔助創新方法)時,我也深刻感受到這個挑戰。為了確保模型在多次提問過程中仍能維持高品質與主題聚焦的輸出,除了進行內容的結構化設計,我也導入了多種提示工程技術(Prompt Engineering Techniques)作為模型導向與錯誤校正的關鍵手段。

但即使如此,仍會出現模型陷入迷失或產生幻覺的瓶頸,因此我當時啟用了兩個付費 GPT 帳號進行對比測試與路徑重導,終於建立起完整的 MSM 六大模組架構,並設計出超過 20 組關鍵提問模型(Key Prompt Frameworks)

MSM AI輔助創新多代理人(Multi-Agents)整合的代理式AI 工作流(Agentic AI workflow)這個架構融合了多項跨領域工具與流程:

  • 新產品開發流程:Cooper、PDMA、Crawford、IPD 等。

  • 問題解決技術:KT法、RCA、FMEA、FA等。

  • 創新方法:Design Thinking(三種版本)、TRIZ等。

  • 專利分析技術:FTO、專利地圖、佈局與迴避設計等。

  • AI提示工程策略:模組化提示描述、錯誤鏈斷點設計、多輪對話導引技術等。

這套系統的設計過程花了我三個月、研讀超過百篇 AI 相關研究文獻,才整合出這套能真正導入企業實戰的 MSM_AI 輔助創新流程 (PS. 那時候還特地寫了一篇部落格短文紀念)。兩年來已在多家企業的創新專案輔導中,證實其實效,特別是在R&D、專利布局與AI技術應用開發領域,對比過去使用的傳統模式,根據企業專案輔導的統計結果,完整的MSM_AI輔助創新流程平均縮短研發50%開發時間。




MSM_AI × Agentic LLM 平台 PoC 實戰整合

從2023六月完成開發MSM後的兩年的時間裡,在四大領域 (手機、半導體、新能源、AI技術開發) 累積38 個 成功案例!
近期(2025.07.17update)更新添化工產業,共五大領域,企業應用項目已累積 48個 有效案例。

目前,MSM_AI 模組已可結合如 Dify 等 Agentic AI 平台,作為企業導入大型語言模型的 PoC 驗證方案,協助:

  • 提升企業 自建 LLM 平台的內部使用率

  • 導入具結構性的創新思維模組,增加思考模式並提高思考效率

  • 解決 LLM 在複雜任務中的常見迷失與輸出品質劣化問題 



📌 大語言模型真正的挑戰,才正要開始。

面對複雜問題的知識組織與創新應用,若無清楚架構與提問引導,LLM 容易失準。這正是 MSM 設計的核心價值:讓 LLM 成為創新引擎,而非失控變數


後記:

知識經濟2.0- 工作流程 x AI x 專業經驗:下一波知識經濟商模產品誕生地
行業的改變從來都不是由內部開始,而是外部的影響,只是目前可能的影響會出現在ai創造的知識經濟發展模式,新的知識經濟商模正在孕育中,這也是我體驗過悲觀的環境但卻依然樂觀的理由。
或許可以這樣思考,知識經濟系統裡面的每一個構成組件中,幾乎所有的組件都會收到ai影響,這樣的影響隨技術發展與應用模式而動態變化,傳統的認知將會被改寫,簡單說,我們習慣的單點工作站模式,將會被工作流模式改變,以前要五個人(五個工作站)可以完成的事,現在可能ㄧ兩個人就可透過ai工作流完成,所以,比如說,新的價值方向會出現在不同工作站的整合上,誰能處理好新工作流的整合與輸出品質,就會創造新的知識產權商機,現在很多人都把眼光聚焦在被取代掉的工作站,這是沒有意義的事。
沒有價值或低價值的工作一定會被ai取代,這個是趨勢,時針在轉,真正要關注的焦點在於,如何從新出現的ai工作流中找到知識產權的商機。

這樣的變化用過去的思考模式一定難以理解,因此要把自己站在10年後來看過去五年的發展,就可以推測未來五年的變化與機會了。

站在10年後回看今天,我們會看到什麼?
或許我們將會驚訝地發現,不是哪個人被AI取代了,而是哪個產業沒能及時整合AI工作流,最後被時代淘汰了。

#AI_DT_TRIZ4innovation
MSM AI輔助創新 企業研發系列- 創新式專利迴避設計工作坊,歡迎企業包班~

#AI_LLM
#AI4INNOVATION
#MSM_AI輔助創新
#MSM_六大模組

企業對 MSM_AI輔助創新有興趣,歡迎與我聯絡現場 DEMO 事宜!

SERVICE@IIIINNOVATION.COM (3*I+ INNOVATION)


2025年6月8日 星期日

TRIZ ,在AI 時代即將重構的創新工具:從高門檻知識工具到創新驅動引擎


#AI時代來臨,TRIZ 的應用進入新階段

   TRIZ(Theory of Inventive Problem Solving)自1980年代起即在全球工程與創新領域廣泛推廣, 作為一套歷經超過 40 年全球推廣的創新方法論,過去以其穩定的創新系統架構與強大的問題解決能力,在工程技術創新領域享有極高聲譽。其工具體系完整,從早期的矛盾矩陣、發明原則、物理矛盾、理想解到擁有嚴謹邏輯架構的功能分析、技術系統進化趨勢到ARIZ等進階工具,構成完整的創新問題分析與解決框架,滿足從創意開發到解決核心技術問題的需求。

 然而,回顧過去數十年在世界各國跨國企業的實施經驗發展,讓我們發現到,TRIZ 長期面臨的挑戰始終不脫離三大瓶頸,分別是:

學習門檻高、知易行難、應用成本高。

  

基礎工具知識需超過百小時培訓時間(從LV1~LV3, 24+32+108 共164 hrs) ,並且要能真正熟練,除了這些工具知識以外,更需要累積數年專案實務經驗,因此TRIZ工具即使具備強大創新應用潛力,這使得TRIZ 難以大規模普及,例如中小企業,尤其是在非工程背景或資源非常有限的企業中,也因此TRIZ工具用人才過去長期以來僅普遍存在於大型跨國企業或少數高階技術開發團隊中。

關鍵字:AI, TRIZ, Innovation, AI輔助創新, AI_LLM_For_Innovation


#AI_LLM崛起,打破 TRIZ 工具知識的學習門檻

 

隨著大型語言模型(LLM, 如 ChatGPT、Claude、Gemini 等)的應用普及,TRIZ 的工具知識正在迅速被「語意提示(Prompt Engineering)」所替代。透過結構化提示描述設計,TRIZ 工具不再需要靠人工死記與手動分析,而是能由AI LLM 強大的資料收集處理與分析和生成的能力,快速推導出如矛盾問題模型、可能的理想解方向、發明原則以及更進一步結合ARIZ應用於解決困難問題流程等生成內容。

此一變革使得 TRIZ 學習門檻驟降,例如包括:

 1. 初學者可透過TRIZ工具提示模組與AI互動學習,從做中學,快速上手,縮短TRIZ工具學習曲線的使用方式。

 2. 中階使用者可透過根據根據專案任務需要設計的創新流程,使用AI整合提示包組合,協助產品技術研發相關人員快速完成創新輔助任務。

 3. 專案顧問則可依據自身產業經驗、分析問題類型並設計TRIZ工具對應問題解決的工作流,加上其他工具,整合成專案級的客製化 AI 輔助創新流程。

TRIZ 工具正從「需要理解與掌握」的學科,轉化為「可以調用與應用」的模組,這是目前TRIZ 在 AI 時代所觀察到最關鍵的進化。

 但 AI + TRIZ ≠ 萬靈丹,#TRIZ應用仍需專案經驗支撐

即便 AI LLM 能迅速給出結構化創新建議,受限於AI LLM應用能力限制以及顧問專家對於TRIZ工具理解程度所給予的結構化提示描述,目前 TRIZ 工具的應用依然需依賴領域知識與專業技能的判斷力。若缺乏下列要素,TRIZ + AI 工具依然難以產生實效,包括但不限於例如:

1. 企業內部需求問題脈絡解析能力

2. 相關對技術需求與市場動態的理解

3. 熟悉 TRIZ 工具的實務應用顧問或內部專家引導

4.  再來就是能根據專案需求整合多種不同工具組合設計的使用能力

5. 能整合專案資源與判斷專案可行性的跨域能力

換句話說,TRIZ + AI 加速創新引擎,但創新領航者仍是具備應用經驗的專家或顧問。


#TRIZ應用模式的轉型:從工具學習轉向專案導入

過去TRIZ學習模式從企業和TRIZ專家合作模式觀察發現主要可以分為三類:  

1. 純工具知識培訓:工具知識式學習(課堂講授,理論先行)

2. 企業內部專案模式:企業專案邊做邊學(即學即用,以戰代訓)

3. 專家專案輔導模式:混合式模式(先學工具再實作應用)

 但在 AI 驅動的創新時代,#TRIZ教育模式將發生以下轉變:

 1. 工具知識式學習將逐漸被 AI LLM 模型內化的提示包組合取代  

2. 專案即戰力的邊做邊學模式將成為主流 

3. 知識型顧問轉型為AI提示模組設計師與專案策略整合者  

這一轉型也促使 TRIZ 創新顧問角色重新定義 —— 不再只是教學工具知識,而是設計 AI + TRIZ + 專案流程的整合式創新解決方案。


#TRIZ在AI時代的價值重構:從工具學習到創新驅動引擎

結語:TRIZ 在 AI 時代的意義不再是「學多少工具」,而是「能否有效結合 AI 與TRIZ應用,為企業創造實質專案的創新成果」。AI 解決了 TRIZ 推廣的最大瓶頸——知識工具學習負擔,讓更多人能用得起、用得快。但要能做到誕生創新成果,能不能用得對、用得準,仍需應用經驗與工具方法流程使用設計的融合能力。

因此,未來的創新人才與顧問將不再僅限於 TRIZ 的「教學者」,而是 TRIZ+AI 的「流程設計者、資源整合者、價值實現者」。這場變革不僅是創新工具層的革新,好比是工業革命時代的知識蒸汽機,驅動創新思維與產業應用的進行根本性重構。

下一階段,將預見創新教育與應用焦點將會出現在:

A. TRIZ工具模組的語意化提示優化

B.  AI輔助的TRIZ應用工作流設計

C. 導師/顧問制的企業創新推進模式

 

這將是一場從「創新工具訓練」走向「創新生產力引擎」的徹底變革,也唯有那些能徹底掌握TRIZ工具知識應用在AI LLM上的人,將會帶領企業穿越AI帶來的未知,創造新的成長曲線。


#AI輔助創新

#AI_LLM

#TRIZ_TOOLS


2025© 汪周禮@智合創新
AI輔助創新:AI+TRIZ+NPD+設計思考+專利迴避設計+提示工程描述設計的創新應用整合流程設計專家

AI輔助創新成功經驗:半導體專利技術挖掘、技術風險分析、新能源AI產品技術應用專案開發、創新式專利迴避設計


如需 DEMO,歡迎與我們聯絡
service@iiiinnovation.com


2025年5月19日 星期一

TRIZ實作系列 1 - TRIZ 工具僅是起點,培養系統思維脈絡與問題建模能力才是應用關鍵



TRIZ 工具僅是起點,培養系統思維脈絡與問題建模能力才是應用關鍵 

過去參加研討會時,曾經有人問我:

TRIZ 有那麼神嗎?真的可以幫企業解決研發難題嗎?」

 

我說:「真的可以,但,別神化。」

 

關鍵字:TRIZ, 創新, 問題模組, 系統思維, 技術脈絡

本文長2800多字,閱讀時間約15分鐘。


TRIZ 是一套強大的創新工具,但它不是解方的終點。

我長期協助企業進行創新產品技術開發,解決困難問題,深知TRIZ 當然是一套有邏輯嚴謹、可系統操作的方法工具。但如果你對工具一知半解、只想看案例、只想模仿操作流程、不懂如何正確使用,卻忽略背後的技術系統脈絡思維與不會解析問題本質,那就很難體會TRIZ應用關鍵—問題建模能力,那 TRIZ 很可能對你來說只是個複雜表格的工具代名詞!

甚至有可能,不但沒幫上忙,還可能讓你一團霧水,甚至用不明就裡的使用發明原則誤導決策,導致失敗,最後認為TRIZ沒用,而束之高閣。


TRIZ 應用的關鍵在於:正確使用問題建模

要能體會TRIZ大用,首先要挑戰解決困難技術問題開始,這個解決困難問題並非僅僅提供創意或概念方案,而是要能進一步找出POC方案,再篩選出具體實施方案,但這一步非常難,如果本身沒有熟悉的技術領域不容易突破,但突破這一層後,就可以踏入產品開發架構設計,甚至根據新產品開發的經驗,進一步了解如何解析商業模式、根據需求開發出適合技術核心的商業模式了。然而根據我多年解決技術問題、新產品開發問題與輔導商業模式開發設計的經驗來看,TRIZ應用的關鍵核心在於正確的使用問題建模!

 

🎯 案例學習有效複製

脫離系統思維與技術脈絡,TRIZ 很容易失靈

 

這幾年我觀察到一個常見現象:

很多人學 TRIZ,是從看案例開始。他們會說:

 • 「這個案例用了矛盾矩陣第 39 20,所以我也可以這樣套用。」

 • 「那家公司用標準解 1-2-1 解決了設計問題,我也試試看。」

 

問題來了——

你知道他為什麼選這個工具嗎?

你知道背後的技術背景、工程參數選擇的條件是什麼嗎?

你知道參數與問題模型的對應本質是否一致?

 

如果不知道,那麼你只是表面模仿,沒有真正理解。

模仿的失敗往往不是工具用錯,而是背景不同,導致效果完全相反。

 

在我過去遇過的案例中,常常看到他人模仿失敗往往不是因為工具用錯,而是背景不同、技術條件與使用工具的方式很有可能會讓效果完全不同!

 

 

工具不是主角,系統思維的技術脈絡才是靈魂

 

TRIZ 最大的價值不在於它有多少張表、多少個發明原則或標準解。

而是:

TRIZ幫助我透過系統性的結構化方式思考描述問題,重構思維框架建立正確的問題模型,選擇適合的思維模式推導出最適合的創新策略。

 

這其中的關鍵步驟,不在工具本身,而在於:

 1. 否理解問題的技術本質?這不是問你知不知道問題痛不痛,而是問你是否知道正確選擇技術系統範圍與限制!

 2. 否正確建構出問題模型?確認系統技術範圍與限制後,確認適合的問題模型以及正確而嚴謹的建立問題模型,例如矛盾在哪?哪一種矛盾層次,相關參數是否可量化或轉換為其他定性描述或結構化的方式組合?

 3. 是否知道什麼時候該用哪個工具、又有哪些工具不能用?我們知道因果鏈CECA挖掘問題很好用,但系統過於複雜的時候,並非適合所有場景,例如多系統層次整合的問題,這時候如何適當的結合其他工具發揮,就很重要!

 

這些TRIZ應用關鍵能力,完全無法靠「看案例」學會,只能靠你在熟悉系統化的技術思維脈絡中實際應用與反覆推演,或可推知一二而學會。

 

TRIZ 的三層操作結構:你在哪一層?

三層 TRIZ 應用架構:

🔧 工具操作層:  懂工具 → 工具操作有效性評估

 

📊 問題建模層:  建構正確模型 → 產生優質方案組合

 

🏗 技術脈絡層:  對接應用背景 → 精準設計架構系統方案策略

───────────────

我通常會把 TRIZ 的應用分成三個層次:

1. 工具理解層,這一層主要是熟悉triz解題工具,了解不同工具的使用範圍與限制,進一步能根據實際情況設計出適合的就提工具組合與應用流程。 這裡我會使用流程設計有效性指標來評估。

2. 問題解析與問題建模層,這一層非常重要,如何選擇並放在適當的應用流程位置,能決定未來概念方案的有效性、方案品質與方案數量。 這裡我會使用問題解析和建模有效性指標來評估。

3. 最後就是技術系統脈絡思維,也可以說是在具體特徵銜接系統架構設計的關鍵,這個需要深入理解技術背景、應用情境場域,否則很容易錯判系統範圍,造成系統分析過於複雜而無法精準鎖定應用有效區間而導致無法使用triz工具或使用失敗。 這裡我會使用系統架構分析模組來進行評估。而這也是最重要的應用技能,決定triz工具是否能應用,但這往往難以透過案例學習,需要透過長期的實務操作經驗累積。

 

TRIZ三層操作架構,你在哪一層?



第三層(技術脈絡層)是最關鍵也最困難的,因為這不僅需要 TRIZ 的工具理解,更仰賴你對技術領域的深刻認知與實戰經驗以及應用技巧組合。

 

 

TRIZ 不能解決的三種情境

 

 1. 問題定義不清楚

如果你還在說「我覺得這是個問題」,那 TRIZ 幫不了你。TRIZ 處理的是明確技術問題,不是模稜兩可的痛點。

 

 2. 🧾沒有具體技術參數可操作

TRIZ 的工具多半需要具備從定性分析到量化或結構化的分析條件,例如「壓力 vs 強度」、「成本 vs 效率」。如果你連這些基本參數都理解不明確,就很難進入工具選用階段。更何況使用複雜參數組合所建立的問題模型矩陣了!

 

 3. 🧪脫離實際工程背景

很多創新方法在白板上都看起來很美好,但一旦離開現場、缺乏脈絡、沒有工程背景經驗,就會像是拿著精密手術刀卻不知道該切哪裡或是手中拿著筷子卻無法在宴會餐桌上夾起任何美食。空談創新方法、缺乏現場經驗,只會讓 TRIZ 成為紙上談兵。

 

 

我在企業實務中的 TRIZ 操作心得

 專利迴避設計:在協助客戶做專利迴避設計時,我從不先選工具,而是先搞清楚客戶實際需求、技術限制與市場競爭定位下的應用範圍。

 研發技術人員卡關:當發現技術人員用問題模型解不了問題,我會回頭檢查:是不是問題描述出問題?是不是選擇的問題模型根本無法對應系統特徵和需求?

 技術專家說問題無解:我也遇過不少「技術專家」說:「這問題沒法解」,但我用不同的解題流程組合對應的建模方式(例如極限模型或矛盾問題模型矩陣)找出突破點。

 

這些都不是工具本身多厲害,而是是否能夠理解深度工具、建構正確問題模型、設計出有效的解題流程與選擇適合解題策略。

 

 

結語:TRIZ 要落地,請帶著「現場智慧」操作

 

TRIZ 不是魔法,更不是萬靈丹。

TRIZ是你在理解技術、正確建構模型、根據需求選擇策略後的高效率創新輔助系統工具組合包。

 

當你真正進入技術問題現場,理解技術背後邏輯與技術限制,再用 TRIZ 工具做搭配時,你會發現它就像打開了系統盲點的一把鑰匙——不是關鍵本身,但能引導你找到關鍵。

 

TRIZ 是打開創新盲點的鑰匙,不是答案本身,卻能指引你找到關鍵。

 

 

📌 你也遇到 TRIZ 落地困難的情況嗎?

 

💬 歡迎留言交流

你是否也曾遇過 TRIZ 落地困難?歡迎分享你的經驗,或是私訊我討論~

讓創新真正發生在研發現場,而不只停留在白板上。

 

作者:汪周禮

TRIZ實戰專家創新顧問

2008年起,累積將近17TRIZ應用輔導企業產品技術與商模創新實務操作經驗,協助企業成功獲得多項創新成果,累積創造超過19億(接近20億)新台幣經濟價值(客戶自評)。

2025© 複製或轉發請來信取得授權


智合TRIZ 創新專家 實戰培訓課程 2025 Q4 

智合創新 TRIZ工具實戰應用培訓班 (一年一班)

https://www.iiiinnovation.com/product-page/%E6%99%BA%E5%90%88triz-%E5%9F%BA%E7%A4%8E%E5%9F%B9%E8%A8%93%E8%AA%B2%E7%A8%8B-2020


2025年4月21日 星期一

智慧財(IP)技術迴避設計:數位轉型企業必修

 

2025.04.21 汪周禮

開源協議風險與技術迴避設計:AI數位轉型企業不可忽視的必修課

在企業數位轉型與 AI 落地加速的當下,開源技術成為不可或缺的推進力量。然而,許多企業在享受開源所帶來的便利與效率時,卻忽略了其背後潛藏的法律與技術風險。

對企業而言,開源並不是免費的萬靈丹。若未建立正確的開源風險觀念與技術應對能力,開源反而可能成為阻礙商業創新的絆腳石。

不只是法律風險,更是技術整合風險

開源協議的風險不僅是法律層面的授權爭議,更關鍵的是隱藏在開發流程中的技術風險。許多開源協議如:

  • GPL(General Public License):高度傳染性,要求衍生作品同樣開源,若誤用恐導致整體商業產品授權被迫開放;

  • LGPL(Lesser GPL):傳染性降低,但仍需注意靜態與動態連結的使用方式;

  • MIT / BSD / Apache:較為寬鬆、允許商業應用,但仍存在專利條款或聲明義務。

實際上,多數企業的風險不是來自於協議本身,而是來自於「技術整合時的依賴關係未察覺」:

  • 無意中引入了 GPL 授權的函式庫;

  • 因套件轉包導致使用者未察覺授權變更;

  • 混合使用商業軟體與開源模組,導致專利授權與開源義務衝突。

這些複雜依賴與交叉使用,使得開源協議風險分析變得不僅是法務部門的事,更是軟體技術設計的挑戰

技術迴避設計:真正的風險穿越能力

面對高傳染力的 GPL 類協議,企業除了避開使用之外,更應該具備「技術迴避設計(Avoidance Design)」的能力。這不只是修改架構那麼簡單,而是透過深度理解協議條款與技術系統依賴,重新設計可替代架構與資料流動機制。

我曾在過去於蒙恬科技(PenPower)負責開源風險迴避設計專案,該專案整合了:

  • 法務律師的協議解釋與合規審查

  • 工程人員對實作細節與依賴樹的掌握

  • 技術架構師的系統重構與模組切割能力

三方合作下,才能打造出真正能避開授權限制、合法且穩定可用的商業應用架構。

這樣的協作過程不僅讓產品「合法可用」,更是提升企業軟實力與研發獨立性的關鍵。

AI + 開源時代的挑戰加劇

AI 時代的開源應用更加複雜:

  • 大型語言模型(如 LLaMA、Stable Diffusion)雖標榜開源,但多數附有「不可商用」條款;

  • 開源模型的訓練資料未明確授權,潛藏侵權風險;

  • 模型推論雖不觸碰原始碼,但輸出結果是否算為衍生作品仍具灰色地帶;

  • 許多企業使用開源工具包(如 Hugging Face、Transformers),卻未意識到其依賴鏈中的授權交叉風險。

這些都意味著,AI 的導入不能只是「好用就上」,而是必須先問能不能用、該怎麼合法用,然後再問怎麼技術突破地用

現有工具的不足與未來方向

雖然目前已有如 SBOM(Software Bill of Materials)等工具可協助掃描使用元件、加速比對開源授權,但在實際商業應用與技術判斷層面,作用仍有限

因此,我們建議企業應從以下方向著手:

  1. 強化 OSPO(Open Source Program Office)制度:不只是合規管理部門,更是開發階段的參與者,協助設計開源友善架構。

  2. 建立風險地圖與可視化依賴模型:搭配 SBOM 資料,進一步結合商業目標與合規風險建模。

  3. 設計開源協議迴避設計流程:將技術替代設計模組化、系統化,作為標準化研發流程一部分。

  4. AI 模型風險評估架構:針對訓練資料、權重參數與推論過程,設計合規評估機制與責任切分框架。

結語:開源,不只是開始,更是考驗技術實力的關鍵

開源世界的本質,是分享與自由,但若要轉化為企業價值,就需要具備能「合法使用」、「合規迴避」、「技術突破」的綜合能力。

我們正處於一個AI+開源交疊的新時代,而能否在風險中前行、在限制中創新,將決定企業能否真正掌握未來。

開源不是避風港,而是技術創新的試金石。

未來知識學- 在 AI 輔助創新的時代需要的能力



2025.04.21 汪周禮

在 AI 輔助創新的時代,什麼能力才不會被取代?

解決問題、迴避設計與創新能力,將成為未來知識學的核心


在過去,專業知識與技術能力是個人成長與企業競爭力的核心。但隨著 AI 技術的快速演進,我們正在進入一個全新的時代:大量流程化、重複性、低認知的工作,將被 AI 迅速取代

製造、程式撰寫、資料分析……這些技能過去或許門檻高、價值高,但如今只要掌握幾個工具,每個人都能用 AI 實現原本需要團隊才能完成的任務。那麼,我們該怎麼在這個「AI 隨手可得」的時代中不被邊緣化?

答案是:認知能力的升級與認知技能的重構


世界經濟論壇(WEF)近日針對2030年職場核心技能提出未來職業報告,該報告指出2030年,預計將有六成職場技能將會被取代,以及2030年最重要的十大核心技能,其中認知技能(2,3,4,7,8,10)共6項,前10占比超過50%!


Full report: https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf

#AI, #AI輔助創新, #未來知識學, #認知能力, #2030職場技能




🔺 認知能力金字塔:AI 時代每個人都必須培養的三層技能

當技術執行逐漸交由 AI 處理,人類的價值將轉移到思考的層次。我們整理出 AI 輔助創新時代的三大關鍵認知能力,形成一個思維升級的金字塔模型:

1. 解決問題能力:找到「對的問題」才是關鍵

多數人在遇到問題時,第一直覺就是「馬上解決」。但這往往導致解決的只是表層現象,而非真正的根因。

在 AI 助力下,我們可以快速分析資料、建立情境模型,但若缺乏「挖掘本質」與「重新定義問題」的能力,就會誤用資源、錯失機會。

✅ 關鍵技能包括:

  • 問題拆解與邏輯建構

  • 問題樹與假設模型建立

  • 情境分析與再定義

🧠 工具輔助建議:

  • 使用 ChatGPT 建立問題分析流程

  • 讓 AI 幫你模擬不同問題路徑下的潛在因果關係


2. 迴避設計能力:設計一個「不容易出錯」的方案

真正有價值的設計,不是找到一個解法,而是找到一個經得起現實條件考驗的解法

這層能力強調風險意識與周延性。你要能在設計前就預見問題,在設計中消除風險,最終讓方案在變動條件下依然能運作。

✅ 關鍵技能包括:

  • 解法風險分析(如 FMEA)

  • 邊界條件推演與限制參數管理

  • 使用 TRIZ 技術矛盾/物理矛盾進行迴避創新

🧠 工具輔助建議:

  • 用 AI 找出過往類似設計失敗案例

  • 輔助建立風險矩陣與備援機制


3. 創新能力:需求對齊與價值重構的能力

創新不等於靈光乍現,而是一種能動態對齊市場需求、重構資源與價值的認知能力。

這是一種策略性的視角,需要你具備「看穿變化本質」的洞察力,能夠透過重新定義問題與資源配置,在現有限制下創造出差異化解法。

✅ 關鍵技能包括:

  • 對需求的動態建模與再定義

  • 創造差異化價值主張

  • 商業模式思維 × 技術應用思維的整合

🧠 工具輔助建議:

  • 利用 AI 協助進行價值主張設計與使用者旅程圖分析

  • 生成多個創新原型並驗證可行性


🧠 認知能力的養成,才是「未來知識學」的核心

在未來,重點將不再是**「知道什麼知識」,而是「能不能用對認知方法去創造有價值的知識」**。

這種從知識記憶 → 知識結構 → 知識創造的轉變,是一種嶄新的學習觀,也是一種職場永續競爭力的保證

而這三層金字塔的能力,本質上正是未來知識學的三個核心支柱:

  1. 知識解析力(解決問題)

  2. 知識轉換力(設計迴避)

  3. 知識創造力(價值創新)


🚀 小結:AI 正在重新定義「人才」的價值

當 AI 可以寫程式、製造產品、甚至自動設計介面,那麼真正難以取代的,是有能力「問出對的問題、設計不出錯的方案、提出有競爭力的新解法」的人

未來不是沒有工作,而是對「認知力強」的人才需求暴增。

現在,就是你重新思考學習與工作方式的時刻。



📌 你目前的學習與工作,是否正在培養這三種能力?

💡 如果想了解如何導入這套能力培養架構到企業訓練、AI導入或創新流程中,歡迎聯絡與我交流(service@iiiinnovation.com)

下一篇文章我會談談——如何設計一套針對這三層能力的 AI 輔助創新訓練系統

2025年4月12日 星期六

從生成式AI造成資訊混亂中找出知識創新機會




生成式ai帶來資訊混亂,也推動 知識、技術與技能的發展以及創新速度!

 

從生成式AI之亂找出知識創新的機會

智者的言論總是振聾發聵,容易啟發我們對時代的深層思考。

提到生成式AI,我總喜歡從知識經濟的超系統架構切入。站在更高的視角,我們能更清楚地看見生成式AI所帶來的深層變化與長遠影響。


趨勢不可擋|知識載體的演化與資訊熵增

知識的傳遞形式歷經多次重大轉變:從古代的口耳相傳,到文字出現後的竹帛紙,印刷術的發明更徹底改寫了知識的流通方式,讓紙本書籍成為主導數百年的核心知識載體。直到網際網路(.com)出現後,數位平台逐漸取代紙本,不僅承載文字,更整合了影音內容與互動功能,大幅提升了知識傳播的速度與範疇。

如今,我們迎來了生成式AI的時代,它讓知識的創作、處理與傳遞更加快速、平易、普及。但伴隨而來的,是一個符合熵增定律的現象:隨著生成門檻降低、資訊總量暴增,資訊品質與真實性卻日益難以辨識,整體的混亂度與不確定性也隨之上升。


混亂是機會|從熵增中看見創新的土壤

根據熵增定律,在一個近似封閉的系統中,秩序將自然走向無序。而從統計學的最大熵原理來看,在缺乏明確判準的狀況下,系統傾向於採取最無偏但也最不確定的資訊分布。

這正好對應了當前生成式AI所帶來的資訊環境特徵。越是自由、開放、多元的資訊生成與傳遞環境,越容易產生內容泛濫、標準模糊、真偽難辨的現象。

但同時,越混亂的環境,反而也孕育出越多的創新機會。


關鍵在於,我們能否在雜訊中辨識出真正的問題,挖掘底層需求與痛點,進而提出對社會真正有價值的解決方案。這樣的創新不只是產生新點子,更在於設計出符合多數人需求、能夠落地執行的可行路徑。


資訊雜質化與價值選擇的挑戰

生成式AI讓知識普及化變得前所未有的容易,但也帶來資訊雜質化與內容失真的問題。

即使是看似專業的知識內容,也可能包含錯誤、拼湊、杜撰,甚至被有意操弄成商業或政治宣傳的工具,而這一切在資訊流中越來越難被識別。

是否該建立更嚴格的資訊檢核制度?是否該迴避那些缺乏倫理審查的生成工具?這些都是值得深思的議題。但與其只是試圖「防堵」資訊的混亂,更重要的是建立一套以「價值」為核心的判讀與篩選能力。


我早在五、六年前研究AI協助撰寫專利時,就注意到網路上出現許多兜售AI代寫論文的平台,價格低廉、品質粗糙。到了近年ChatGPT迅速進化後,這些平台表面上逐漸消失,但實際上AI協助生成論文、甚至引用錯誤與虛假資訊的現象仍然時有所聞。

這提醒我們:不是生成方式的問題,而是 #內容價值的問題 。一段文字是否具有價值,不在於是人寫的還是AI寫的,而在於它

是否提出了值得思考的問題 、並能 #引發可靠的解決方案構想。


創新是AI尚未越界的稀有領域

我這兩年在輔導企業創新專案中觀察到,在知識提煉與問題分析和問題解決這些碎片化的能力上,現階段頂尖的生成式AI 能力已經超越多數沒有受過訓練的一般人。

這代表了一種巨大的轉變:AI不僅能生成語句,還能進行初步的邏輯推理與知識組合。對於不具備專業素養的個體來說,AI正在快速取代其在資訊生產與使用中的角色。

然而,有一個領域,生成式AI仍難以觸及——創新。


真正的創新,是一種跨領域的高階能力,需要結合系統思維、跨域知識整合、價值判斷、需求探索與趨勢預測等多重複雜技能。它要求人類不僅能理解既有架構,更能跳出框架重新定義問題與價值。


靈魂拷問在於,我們未來能否在具備分析問題定義問題解決問題的能力同時,是否具備重新定義問題的能力?


這在創新領域是基礎能力題目。


未來,生成式AI對知識結構與思考邏輯的衝擊,勢必將挑戰我們過去對創新的定義。

它會讓我們從「創意等於創新」的狹隘想像中解放出來,走向「創新即為提供未來問題解決方案」的更完整創造力實踐。


結語|從生成式AI之亂中鍛鍊我們的創新肌肉

熵增是不可逆的趨勢,但並不代表我們只能被動接受。

我們可以選擇更高層次的回應方式:不是追求資訊整齊劃一的表象秩序,而是善用AI與人類的協作,在混亂中建立新的價值邏輯與判斷標準。

當生成式AI為知識創造開啟一個又一個混亂之門,也為我們打開了創新的可能性。這場「生成式AI之亂」,會不會正是下一波知識創新浪潮的起點?

 

生成式AI加速 知識、技術與技能變現,培養創新能力刻不容緩!

 

2025©汪周禮@智合創新


2025年4月3日 星期四

剖析AI時代:未來職場兩項不可或缺的核心技能




🔍前提背景:AI Coding 的變局與意涵

隨著大型語言模型(LLMs)如 GPT-4ClaudeGemini 的進步,「自然語言變成程式語言」的時代已經來臨。這意味著程式開發的門檻不再只是掌握語法,而是能否精準設計需求並轉譯成AI可以執行的內容生成邏輯

換句話說,在AI工具幫助下:

Coding 不再等同於程式編碼,而是『將想法結構化,並將概念系統化設計』的能力」

隨著數位轉型浪潮加速推動AI工具應用範圍拓展,目前AI工具已經從技術工具演變成職場技能的一部分。

 關鍵字Digital Transformation, AI LLM Application, Systematic Thinking, Structured Prompting, Semantic Coding, Vibe Coding, 

 


那麼,面對數位技能轉型時代,AI工具玲瑯滿目,我們到底該培養哪些真正關鍵且具有AI時代競爭力的能力?


🧠 核心能力一:系統化描述能力(Systematic Descriptive Competency

定義:

能將模糊概念、需求、場景、問題,轉化為具邏輯性、可模組化、可實作的描述結構,其核心包括:

  • 系統架構理解(System Thinking
  • 系統化提問(Problem Structuring
  • 任務與角色建模(Actor-Task Modeling
  • 邏輯流程拆解(Flow Breakdown
  • 模塊設計與接口描述(Interface Design

為何它是未來基本功?

技術邏輯面(Technology Layer

AI 模型並不理解你真正的意圖,它只是在文字語意空間的組合中進行模式比對/匹配。若沒有經過系統化的邏輯拆解與引導AI 很容易產出偏離目標的結果。這也正是為什麼 Prompt Engineering 正在逐步轉向 Semantic Process Engineering 的關鍵原因。

🔧 應用:

  • 用多輪 prompt 設計來驅動 LLM 生成一個複雜應用(multi-shot or chain-of-thought prompts),例如利用MSM(Multi-shots Models)可任意開發出符合需求的多層次系統語意模型架構。
  • 撰寫對應的 API specs、邏輯結構圖,交由 AI 自動生成 microservices

應用邏輯面(Application Layer

當你需要跨部門、跨語言、跨平台協作時,受限於彼此的專業背景與領域認知,通用語言往往不是自然語言,是結構語言 —— 例如 user storydata flowsystem I/O specs

🔧 應用:

  • UX/UI協作設計MVP時,需清楚傳遞系統行為與狀態轉換
  • LLM做業務流程自動化,描述需涵蓋流程邊界條件與例外處理

市場邏輯面(Market Layer

你必須把「市場需求」轉換成「可驗證、可迭代的設計參數與功能邏輯」,這就是**需求工程(Requirements Engineering**的專業本質,而系統化描述能力正是需求工程的基礎功。



🌀 核心能力二:Vibe Coding(語感式程式邏輯能力)

專業定義:

不是傳統意義上的寫code,而是一種融合語言邏輯、功能直覺與系統設計的「語感式表達能力」,能透過自然語言與AI互動,快速構建可執行的原型邏輯。

這種能力的形成,不只是語法熟練,而是:

  • 熟悉 Prompt → Function Mapping 模式
  • 理解語言背後的技術語意與架構轉換(Language-to-Structure Mapping
  • 能用語言描述資料流、演算法、條件邏輯與元件結構,是一種用語言設計模塊、任務邏輯流程、整合不同角色與完成需求任務的方法,逐步取代傳統的語法手動撰寫過程。
  • 擅長將人類語言轉譯成 LLMs/Agents 可解析的行為流程

 

為何這項能力正在崛起?

技術邏輯面

未來的開發模式是「Co-pilot型共創開發」:人提出高層抽象描述 → AI完成底層生成人再優化修正。
Vibe Coding
是這種人機共創的中介橋樑

🔧 應用:

  • AI IDE(如 CursorReplit Ghostwriter)中,用語言構建整體應用框架
  • 透過Prompt寫一個Agent行為流程(事件觸發行動記憶條件決策)

應用邏輯面

未來的「寫code」是用語言設計模塊、邏輯、角色與任務。這不再只是語法遊戲,而是能不能用語言塑造一個**「可運行世界」**

🔧 應用:

  • 構建 Chatbot agent,描述其角色、對話邏輯、資料輸出結構
  • LLM讀懂使用者的複雜需求,轉譯為 API 行為邏輯與輸出結構(JSON/SQL/Python function

市場邏輯面

能夠快速產出可展示(Demoable)的解決方案,在未來將是高價值人才的必要關鍵能力。 Vibe Coding 就是能讓你「1小時內構建出AI原型」的超能力。

  

結論

 

一、       系統化描述能力是 LLM 使用效能的前提,但不是應用落地的終點

當你能清楚描述一個系統的結構、流程、角色、功能與限制條件,LLM 就能產出可讀的內容、流程設計、甚至部分程式碼。然而,這些產出仍只是“語意模擬層”的結果,距離真正「可執行的工具」仍有重大差距。這就是現今很多人「會用 ChatGPT,但做不出工具」的真實原因。

因此,系統化描述能力可以提升使用效率,但不等於創造商業價值,需要整合vibe coding工具和累積足夠的軟體產品開發經驗和技巧。

 

二、從01將創意變成可交付的AI應用,需要Vibe Coding

Vibe Coding 並不僅指寫程式語法的熟練度,而是指:能夠用語言與LLM協同構建邏輯、功能模塊與程式語意的能力。它是一種將語言邏輯 + 概念建模 + 技術系統串接語感的混合技能,本質上是:

「用自然語言+模擬語法方式,去建構一個可執行的邏輯化數位系統。」

 

然而目前的 LLM/AI IDE 開發環境(如 Replit, Cursor, etc.)仍假設使用者具有基礎開發思維、模組邏輯概念、甚至資料結構常識,想要真正落實創造具體市場應用價值,這對提倡創造力和創意能力將會成為AI時代且無開發背景的社會大眾來說仍是高牆。

Vibe Coding 是從創意 → 原型 → 工具的關鍵橋樑

 

三、為什麼 Vibe Coding 將成為 AI Coding Automation 市場的關鍵需求?

 1.     AI Coding 正從語法自動化邁向「系統生成自動化」

早期是寫小功能、寫函數;現在是「設計一整個系統架構」,不只要 AI 懂語法,更要它懂邏輯組織、模組關聯、流程依存,Vibe Coding 提供這種「模糊→模塊」的語言過渡層,扮演“語言工程師”。

 2.     工程複雜性爆炸式提升,專業分工難以回到「全能開發者」的時代

即便是筆者從高一就自學程式、大學熟悉多種程式語言的開發者,現在若從0做軟體產品也難以獨立完成,原因在於:不只是寫程式難,而是架構、資料流、API、前後端、DevOps、驗證系統全都綁在一起,需要大量時間學習累積技巧。

 這導致「語言驅動協作模型」將成為主流 —— 一人定義需求,AI + 專業模組補完實作

 

3.     未來用戶的需求,是:「我有想法 → 快速生成可用工具 → 拿去市場驗證」而不是:「我開始學寫code,三年後上架MVP

 

所以,Vibe Coding 將變成新時代的 MVP 實現語言,Vibe Coding 是解決技術落地與創意轉換的瓶頸,也是 AI 自動化從「工具」進化為「創業平台」的核心驅動因子。

 Vibe coding不等於no code,在AI Coding進入自動化的破曉時代,程式語言不再是產品技術開發的唯一語法,語意語感才是 AI 時代的關鍵能力。

系統化描述能力,讓你精準與AI溝通;Vibe Coding,讓你真正將想法變成工具。這兩項能力,將是下一波 AI 開發人才與產品設計者的職業技能入場門票。

 


🚀 為什麼這兩項能力是你未來最值得投資的能力?

 以下從使用者、能力類型以及實際應用價值的表格說明

使用者角色

需要能力類型

實際應用職能與價值說明

🔧 產品經理

系統化描述

將使用者需求轉化為功能邏輯、建立用戶旅程與模塊架構、與AI共創原型

🧠 AI 工程師

系統化描述 + Vibe Coding

建立多輪Prompt流程、設計AI模組間協作、建構Agent或自動化服務架構

👨‍💻 軟體開發者

Vibe Coding

LLM平台應用程式邏輯建構、程式自動補完優化、與語言模型共創架構與控制流程

💼 業務/顧問

系統化描述

解構客戶需求、建立流程圖與決策邏輯、快速產出AI協作範本作為解決方案模板

🎨 創作者/設計師

Vibe Coding

將創意敘述轉化為互動工具(Chatbot、動畫腳本、作品互動模組)、與AI共創多媒體原型

🌐 一般社會大眾

系統化描述 + Vibe Coding

用自然語言產出專業級報告、創建小型應用(如計算器、流程表單)、控制AI處理日常任務或小型創業應用

 

🔑 最後提醒:

AI會越來越會「執行」,但永遠不會主動「定義問題、拆解邏輯、設定價值指標」。而這三件事,正是系統化描述能力與 Vibe Coding的交匯點,更是我們未來工作價值核心所在!

 

2025©汪周禮@智合創新

AI時代訓練認知肌肉避免思考外包- 新聞隨筆

  #AI時代訓練認知肌肉避免思考外包 今天看到一則新聞,” 研究員警告「思考外包」侵蝕知識工作者”, “薩卡爾在 TED AI 論壇上指出,當代知識工作者正陷入「思考外包」的困境,原本應展現人類智慧的過程,如今被徹底 AI 化。人們不再是思想的創造者,而變成自己思想的「中階管理...