生成式ai帶來資訊混亂,也推動 知識、技術與技能的發展以及創新速度!
從生成式AI之亂找出知識創新的機會
智者的言論總是振聾發聵,容易啟發我們對時代的深層思考。
提到生成式AI,我總喜歡從知識經濟的超系統架構切入。站在更高的視角,我們能更清楚地看見生成式AI所帶來的深層變化與長遠影響。
趨勢不可擋|知識載體的演化與資訊熵增
知識的傳遞形式歷經多次重大轉變:從古代的口耳相傳,到文字出現後的竹帛紙,印刷術的發明更徹底改寫了知識的流通方式,讓紙本書籍成為主導數百年的核心知識載體。直到網際網路(.com)出現後,數位平台逐漸取代紙本,不僅承載文字,更整合了影音內容與互動功能,大幅提升了知識傳播的速度與範疇。
如今,我們迎來了生成式AI的時代,它讓知識的創作、處理與傳遞更加快速、平易、普及。但伴隨而來的,是一個符合熵增定律的現象:隨著生成門檻降低、資訊總量暴增,資訊品質與真實性卻日益難以辨識,整體的混亂度與不確定性也隨之上升。
混亂是機會|從熵增中看見創新的土壤
根據熵增定律,在一個近似封閉的系統中,秩序將自然走向無序。而從統計學的最大熵原理來看,在缺乏明確判準的狀況下,系統傾向於採取最無偏但也最不確定的資訊分布。
這正好對應了當前生成式AI所帶來的資訊環境特徵。越是自由、開放、多元的資訊生成與傳遞環境,越容易產生內容泛濫、標準模糊、真偽難辨的現象。
但同時,越混亂的環境,反而也孕育出越多的創新機會。
關鍵在於,我們能否在雜訊中辨識出真正的問題,挖掘底層需求與痛點,進而提出對社會真正有價值的解決方案。這樣的創新不只是產生新點子,更在於設計出符合多數人需求、能夠落地執行的可行路徑。
資訊雜質化與價值選擇的挑戰
生成式AI讓知識普及化變得前所未有的容易,但也帶來資訊雜質化與內容失真的問題。
即使是看似專業的知識內容,也可能包含錯誤、拼湊、杜撰,甚至被有意操弄成商業或政治宣傳的工具,而這一切在資訊流中越來越難被識別。
是否該建立更嚴格的資訊檢核制度?是否該迴避那些缺乏倫理審查的生成工具?這些都是值得深思的議題。但與其只是試圖「防堵」資訊的混亂,更重要的是建立一套以「價值」為核心的判讀與篩選能力。
我早在五、六年前研究AI協助撰寫專利時,就注意到網路上出現許多兜售AI代寫論文的平台,價格低廉、品質粗糙。到了近年ChatGPT迅速進化後,這些平台表面上逐漸消失,但實際上AI協助生成論文、甚至引用錯誤與虛假資訊的現象仍然時有所聞。
這提醒我們:不是生成方式的問題,而是 #內容價值的問題 。一段文字是否具有價值,不在於是人寫的還是AI寫的,而在於它
是否提出了值得思考的問題
、並能 #引發可靠的解決方案構想。
創新是AI尚未越界的稀有領域
我這兩年在輔導企業創新專案中觀察到,在知識提煉與問題分析和問題解決這些碎片化的能力上,現階段頂尖的生成式AI 能力已經超越多數沒有受過訓練的一般人。
這代表了一種巨大的轉變:AI不僅能生成語句,還能進行初步的邏輯推理與知識組合。對於不具備專業素養的個體來說,AI正在快速取代其在資訊生產與使用中的角色。
然而,有一個領域,生成式AI仍難以觸及——創新。
真正的創新,是一種跨領域的高階能力,需要結合系統思維、跨域知識整合、價值判斷、需求探索與趨勢預測等多重複雜技能。它要求人類不僅能理解既有架構,更能跳出框架重新定義問題與價值。
靈魂拷問在於,我們未來能否在具備分析問題、定義問題與解決問題的能力同時,是否具備重新定義問題的能力?
這在創新領域是基礎能力題目。
未來,生成式AI對知識結構與思考邏輯的衝擊,勢必將挑戰我們過去對創新的定義。
它會讓我們從「創意等於創新」的狹隘想像中解放出來,走向「創新即為提供未來問題解決方案」的更完整創造力實踐。
結語|從生成式AI之亂中鍛鍊我們的創新肌肉
熵增是不可逆的趨勢,但並不代表我們只能被動接受。
我們可以選擇更高層次的回應方式:不是追求資訊整齊劃一的表象秩序,而是善用AI與人類的協作,在混亂中建立新的價值邏輯與判斷標準。
當生成式AI為知識創造開啟一個又一個混亂之門,也為我們打開了創新的可能性。這場「生成式AI之亂」,會不會正是下一波知識創新浪潮的起點?
生成式AI加速 知識、技術與技能變現,培養創新能力刻不容緩!
2025©汪周禮@智合創新
沒有留言:
張貼留言