搜尋此網誌

2025年4月21日 星期一

未來知識學- 在 AI 輔助創新的時代需要的能力



2025.04.21 汪周禮

在 AI 輔助創新的時代,什麼能力才不會被取代?

解決問題、迴避設計與創新能力,將成為未來知識學的核心


在過去,專業知識與技術能力是個人成長與企業競爭力的核心。但隨著 AI 技術的快速演進,我們正在進入一個全新的時代:大量流程化、重複性、低認知的工作,將被 AI 迅速取代

製造、程式撰寫、資料分析……這些技能過去或許門檻高、價值高,但如今只要掌握幾個工具,每個人都能用 AI 實現原本需要團隊才能完成的任務。那麼,我們該怎麼在這個「AI 隨手可得」的時代中不被邊緣化?

答案是:認知能力的升級與認知技能的重構


世界經濟論壇(WEF)近日針對2030年職場核心技能提出未來職業報告,該報告指出2030年,預計將有六成職場技能將會被取代,以及2030年最重要的十大核心技能,其中認知技能(2,3,4,7,8,10)共6項,前10占比超過50%!


Full report: https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf

#AI, #AI輔助創新, #未來知識學, #認知能力, #2030職場技能




🔺 認知能力金字塔:AI 時代每個人都必須培養的三層技能

當技術執行逐漸交由 AI 處理,人類的價值將轉移到思考的層次。我們整理出 AI 輔助創新時代的三大關鍵認知能力,形成一個思維升級的金字塔模型:

1. 解決問題能力:找到「對的問題」才是關鍵

多數人在遇到問題時,第一直覺就是「馬上解決」。但這往往導致解決的只是表層現象,而非真正的根因。

在 AI 助力下,我們可以快速分析資料、建立情境模型,但若缺乏「挖掘本質」與「重新定義問題」的能力,就會誤用資源、錯失機會。

✅ 關鍵技能包括:

  • 問題拆解與邏輯建構

  • 問題樹與假設模型建立

  • 情境分析與再定義

🧠 工具輔助建議:

  • 使用 ChatGPT 建立問題分析流程

  • 讓 AI 幫你模擬不同問題路徑下的潛在因果關係


2. 迴避設計能力:設計一個「不容易出錯」的方案

真正有價值的設計,不是找到一個解法,而是找到一個經得起現實條件考驗的解法

這層能力強調風險意識與周延性。你要能在設計前就預見問題,在設計中消除風險,最終讓方案在變動條件下依然能運作。

✅ 關鍵技能包括:

  • 解法風險分析(如 FMEA)

  • 邊界條件推演與限制參數管理

  • 使用 TRIZ 技術矛盾/物理矛盾進行迴避創新

🧠 工具輔助建議:

  • 用 AI 找出過往類似設計失敗案例

  • 輔助建立風險矩陣與備援機制


3. 創新能力:需求對齊與價值重構的能力

創新不等於靈光乍現,而是一種能動態對齊市場需求、重構資源與價值的認知能力。

這是一種策略性的視角,需要你具備「看穿變化本質」的洞察力,能夠透過重新定義問題與資源配置,在現有限制下創造出差異化解法。

✅ 關鍵技能包括:

  • 對需求的動態建模與再定義

  • 創造差異化價值主張

  • 商業模式思維 × 技術應用思維的整合

🧠 工具輔助建議:

  • 利用 AI 協助進行價值主張設計與使用者旅程圖分析

  • 生成多個創新原型並驗證可行性


🧠 認知能力的養成,才是「未來知識學」的核心

在未來,重點將不再是**「知道什麼知識」,而是「能不能用對認知方法去創造有價值的知識」**。

這種從知識記憶 → 知識結構 → 知識創造的轉變,是一種嶄新的學習觀,也是一種職場永續競爭力的保證

而這三層金字塔的能力,本質上正是未來知識學的三個核心支柱:

  1. 知識解析力(解決問題)

  2. 知識轉換力(設計迴避)

  3. 知識創造力(價值創新)


🚀 小結:AI 正在重新定義「人才」的價值

當 AI 可以寫程式、製造產品、甚至自動設計介面,那麼真正難以取代的,是有能力「問出對的問題、設計不出錯的方案、提出有競爭力的新解法」的人

未來不是沒有工作,而是對「認知力強」的人才需求暴增。

現在,就是你重新思考學習與工作方式的時刻。



📌 你目前的學習與工作,是否正在培養這三種能力?

💡 如果想了解如何導入這套能力培養架構到企業訓練、AI導入或創新流程中,歡迎聯絡與我交流(service@iiiinnovation.com)

下一篇文章我會談談——如何設計一套針對這三層能力的 AI 輔助創新訓練系統

2025年4月14日 星期一

 生成式AI混亂的啟發 - 找出去蕪存菁的文章特徵點


網路透過文字傳遞思想,但文字作為思想載體還是會失真,但至少是目前我們擁有的。


從2008到2012年專利技術分析超越四萬件專利,後面沒在算了,專利分析累積從文字擷取技術特徵與特徵參數的能力,轉換到閱讀文章速度更快也更簡單,這個技術特徵對應到文章就是所謂的觀點,而參數就是觀點的細節具體描述。


如果一個技術方案的技術特徵與特徵參數組合豐富,我們就知道這個發明肯定有東西,同理,在看一般網路文章也可以用這種方式快速篩選。


基於上面的道理,我們看一個人文章就知道,當文章把很多觀點透過文字傳遞,如果文章觀點豐富,容易觸動共鳴而引人深思,就知道這個人很厲害,是個飽學之士蘊藏智慧。


但是觀點少也不見得不好,主要在於啟發性,這同樣也可以套用到專利審查要件中的創造性或非顯而易見性 (inventive or non-obviousness)要件,特別是美國專利審查基準的非顯而易見性要件,是目前我研究過全球最豐富的且完整的創造性要件,至少有超過20個不同的切入角度。如果符合創造性要件的思維模式,這樣的文章內容也是可以的。


念書找知識點,技術分析找特徵點,而寫文章找觀點或認知點切入,一篇文章多達十多種認知點,就是非常有價值的內容了,也讓人深受啟發。


根據我的觀察,#AI文章的認知點很少 ,因為生成技術的關係,通常都是順著一個觀點延伸出知識點,而人類寫文章受經驗知識與智慧影響,越厲害的人可以植入很多不同觀點形成文章的特徵點,繼而引發共鳴,啟發思想。


目前教育或許應該是時候開始培養學生能夠分析文章、論文或技術的能力,藉此作為建立初步的系統思維和分析思維的能力基礎。


補充:

學識累積知識點,經驗累積觀點,而認知層次的認知點可以塑造出不同的認知角度,而知識點之間交互作用看邏輯、相關、層次與架構。


2025.04.14 汪周禮隨筆


文末附上使用五種評估指標利用CHATGPT分析網路文章




2025年4月12日 星期六

從生成式AI造成資訊混亂中找出知識創新機會




生成式ai帶來資訊混亂,也推動 知識、技術與技能的發展以及創新速度!

 

從生成式AI之亂找出知識創新的機會

智者的言論總是振聾發聵,容易啟發我們對時代的深層思考。

提到生成式AI,我總喜歡從知識經濟的超系統架構切入。站在更高的視角,我們能更清楚地看見生成式AI所帶來的深層變化與長遠影響。


趨勢不可擋|知識載體的演化與資訊熵增

知識的傳遞形式歷經多次重大轉變:從古代的口耳相傳,到文字出現後的竹帛紙,印刷術的發明更徹底改寫了知識的流通方式,讓紙本書籍成為主導數百年的核心知識載體。直到網際網路(.com)出現後,數位平台逐漸取代紙本,不僅承載文字,更整合了影音內容與互動功能,大幅提升了知識傳播的速度與範疇。

如今,我們迎來了生成式AI的時代,它讓知識的創作、處理與傳遞更加快速、平易、普及。但伴隨而來的,是一個符合熵增定律的現象:隨著生成門檻降低、資訊總量暴增,資訊品質與真實性卻日益難以辨識,整體的混亂度與不確定性也隨之上升。


混亂是機會|從熵增中看見創新的土壤

根據熵增定律,在一個近似封閉的系統中,秩序將自然走向無序。而從統計學的最大熵原理來看,在缺乏明確判準的狀況下,系統傾向於採取最無偏但也最不確定的資訊分布。

這正好對應了當前生成式AI所帶來的資訊環境特徵。越是自由、開放、多元的資訊生成與傳遞環境,越容易產生內容泛濫、標準模糊、真偽難辨的現象。

但同時,越混亂的環境,反而也孕育出越多的創新機會。


關鍵在於,我們能否在雜訊中辨識出真正的問題,挖掘底層需求與痛點,進而提出對社會真正有價值的解決方案。這樣的創新不只是產生新點子,更在於設計出符合多數人需求、能夠落地執行的可行路徑。


資訊雜質化與價值選擇的挑戰

生成式AI讓知識普及化變得前所未有的容易,但也帶來資訊雜質化與內容失真的問題。

即使是看似專業的知識內容,也可能包含錯誤、拼湊、杜撰,甚至被有意操弄成商業或政治宣傳的工具,而這一切在資訊流中越來越難被識別。

是否該建立更嚴格的資訊檢核制度?是否該迴避那些缺乏倫理審查的生成工具?這些都是值得深思的議題。但與其只是試圖「防堵」資訊的混亂,更重要的是建立一套以「價值」為核心的判讀與篩選能力。


我早在五、六年前研究AI協助撰寫專利時,就注意到網路上出現許多兜售AI代寫論文的平台,價格低廉、品質粗糙。到了近年ChatGPT迅速進化後,這些平台表面上逐漸消失,但實際上AI協助生成論文、甚至引用錯誤與虛假資訊的現象仍然時有所聞。

這提醒我們:不是生成方式的問題,而是 #內容價值的問題 。一段文字是否具有價值,不在於是人寫的還是AI寫的,而在於它

是否提出了值得思考的問題 、並能 #引發可靠的解決方案構想。


創新是AI尚未越界的稀有領域

我這兩年在輔導企業創新專案中觀察到,在知識提煉與問題分析和問題解決這些碎片化的能力上,現階段頂尖的生成式AI 能力已經超越多數沒有受過訓練的一般人。

這代表了一種巨大的轉變:AI不僅能生成語句,還能進行初步的邏輯推理與知識組合。對於不具備專業素養的個體來說,AI正在快速取代其在資訊生產與使用中的角色。

然而,有一個領域,生成式AI仍難以觸及——創新。


真正的創新,是一種跨領域的高階能力,需要結合系統思維、跨域知識整合、價值判斷、需求探索與趨勢預測等多重複雜技能。它要求人類不僅能理解既有架構,更能跳出框架重新定義問題與價值。


靈魂拷問在於,我們未來能否在具備分析問題定義問題解決問題的能力同時,是否具備重新定義問題的能力?


這在創新領域是基礎能力題目。


未來,生成式AI對知識結構與思考邏輯的衝擊,勢必將挑戰我們過去對創新的定義。

它會讓我們從「創意等於創新」的狹隘想像中解放出來,走向「創新即為提供未來問題解決方案」的更完整創造力實踐。


結語|從生成式AI之亂中鍛鍊我們的創新肌肉

熵增是不可逆的趨勢,但並不代表我們只能被動接受。

我們可以選擇更高層次的回應方式:不是追求資訊整齊劃一的表象秩序,而是善用AI與人類的協作,在混亂中建立新的價值邏輯與判斷標準。

當生成式AI為知識創造開啟一個又一個混亂之門,也為我們打開了創新的可能性。這場「生成式AI之亂」,會不會正是下一波知識創新浪潮的起點?

 

生成式AI加速 知識、技術與技能變現,培養創新能力刻不容緩!

 

2025©汪周禮@智合創新


AI時代訓練認知肌肉避免思考外包- 新聞隨筆

  #AI時代訓練認知肌肉避免思考外包 今天看到一則新聞,” 研究員警告「思考外包」侵蝕知識工作者”, “薩卡爾在 TED AI 論壇上指出,當代知識工作者正陷入「思考外包」的困境,原本應展現人類智慧的過程,如今被徹底 AI 化。人們不再是思想的創造者,而變成自己思想的「中階管理...